Peptide cyclization and cyclodimerization by Cu(I)-mediated azide-alkyne cycloaddition.

نویسندگان

  • Reshma Jagasia
  • Justin M Holub
  • Markus Bollinger
  • Kent Kirshenbaum
  • M G Finn
چکیده

Head-to-tail cyclodimerization of resin-bound oligopeptides bearing azide and alkyne groups occurs readily by 1,3-dipolar cycloaddition upon treatment with Cu(I). The process was found to be independent of peptide sequence, sensitive to the proximity of the alkyne to the resin, sensitive to solvent composition, facile for alpha- and beta-peptides but not for gamma-peptides, and inhibited by the inclusion of tertiary amide linkages. Peptides shorter than hexamers were predominantly converted to cyclic monomers. Oligoglycine and oligo(beta-alanine) chains underwent oligomerization by 1,3-dipolar cycloaddition in the absence of a copper catalyst. These results suggest that cyclodimerization depends on the ability of the azido-alkyne peptide to form in-frame hydrogen bonds between chains in order to place the reacting groups in close proximity and lower the entropic penalty for dimerization. The properties of the resin and solvent are crucial, giving rise to a productive balance between swelling and interstrand H-bonding. These findings allow for the design of optimal substrates for triazole-forming ring closure and for the course of the reaction to be controlled by the choice of conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1,4-Disubstituted-[1,2,3]triazolyl-Containing Analogues of MT-II: Design, Synthesis, Conformational Analysis, and Biological Activity

Side chain-to-side chain cyclizations represent a strategy to select a family of bioactive conformations by reducing the entropy and enhancing the stabilization of functional ligand-induced receptor conformations. This structural manipulation contributes to increased target specificity, enhanced biological potency, improved pharmacokinetic properties, increased functional potency, and lowered m...

متن کامل

A versatile method for the preparation of conjugates of peptides with DNA/PNA/analog by employing chemo-selective click reaction in water

The specific 1,3 dipolar Hüisgen cycloaddition reaction known as 'click-reaction' between azide and alkyne groups is employed for the synthesis of peptide-oligonucleotide conjugates. The peptide nucleic acids (PNA)/DNA and peptides may be appended either by azide or alkyne groups. The cycloaddition reaction between the azide and alkyne appended substrates allows the synthesis of the desired con...

متن کامل

Positional effects of click cyclization on β-hairpin structure, stability, and function.

The use of the copper(I)-assisted azide-alkyne cycloaddition (CuAAC, or "click" reaction) as a method of β-hairpin stabilization was investigated at several different positions to determine the impact on hairpin structure and function, including hydrogen bonded sites, non-hydrogen bonded sites, and at the peptide termini. The role of the turn sequence in the peptide and the chain length of the ...

متن کامل

Viral MRI contrast agents: coordination of Gd by native virions and attachment of Gd complexes by azide-alkyne cycloaddition.

Icosahedral virus particles decorated with a Gd(DOTA) analogue by Cu-mediated azide-alkyne cycloaddition (CuAAC) and/or with Gd(3+) ions by coordination to the viral nucleoprotein show increased T(1) relaxivity relative to free Gd(DOTA) complexes in solution.

متن کامل

Application of Cu(I)-catalyzed azide–alkyne cycloaddition for the design and synthesis of sequence specific probes targeting double-stranded DNA

Efficient protocols based on Cu(I)-catalyzed azide-alkyne cycloaddition were developed for the synthesis of conjugates of pyrrole-imidazole polyamide minor groove binders (MGB) with fluorophores and with triplex-forming oligonucleotides (TFOs). Diverse bifunctional linkers were synthesized and used for the insertion of terminal azides or alkynes into TFOs and MGBs. The formation of stable tripl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of organic chemistry

دوره 74 8  شماره 

صفحات  -

تاریخ انتشار 2009